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Abstract—A simple, explicit algorithm previously developed to produce accurate solutions of phase change

problems in one space dimension, is extended to cope with circular regions with spatially uniform boundary

conditions. On study of numerically predicted results a single non-dimensional expression, which provides a

prediction of the solidification/melting time of a circular cylinder, is derived. This expression is subsequently

used to provide upper and lower bounds on solidification/melting times for general symmetric cylindrically
shaped regions with spatially uniform boundary conditions.

NOMENCLATURE
c, specific heat;
E. percentage error spread (see Section 4);
dm, diameter of minor axis;
H, enthalpy;

L latent heat;

R(t), radial position of phase change boundary;

r radial coordinate;

Tas radius of approximating cylinder (see Sec-
tion 4);

" radius of lower bounding cylinder (see Sec-
tion 4);

Tus radius of upper bounding cylinder (see Sec-
tion 4});

T, temperature;

Tm, phase change temperature;

Tw, fixed surface temperature;

Ty,  Initial temperature;

t, time ;

t¥, non-dimensional phase change time;
o, density;

(#)*, non-dimensional variable.

1. INTRODUCTION

HEeaT conduction problems involving a change of
phase are usually solved by numerical methods. The
major difficulty to overcome in generating a numerical
solution is in the representation of the discontinuity of
the temperature gradient at the phase change boun-
dary. A popular way to avoid this difficulty involves
the use of the enthalpy method [1-8]. Here the
governing equations are reformulated in terms of the
enthalpy, H (i.e. the sum of the sensible and latent
heats). This removes the need to directly trace the
position of the moving boundary and, hence, elim-
inates the numerical problems associated with the
discontinuity of the temperature gradient.

Although two recent comprehensive reviews [9, 10]
have cited enthalpy methods as the best approach fora
wide variety of problems, numerically induced oscil-
lations have been observed {2, 11-13] in the pre-

dictions of the standard enthalpy methods. Recently,
we [ 13, 14] have proposed a simple, explicit technique
for one-dimensional problems, based upon the en-
thalpy method, which both eliminates the numerically
induced oscillations and produces accurate predictions.
Unfortunately, except in the cases of rectangular and
circular regions, analysis of phase change problems in
two-dimensional regions is not only complicated, but
also there is no obvious method to assess the reliability
of the predictions. The aim of this paper is to describe
an extension to the authors one-dimensional method
which provides a means to estimate upper and lower
bounds to melting/solidification times for two-
dimensional regions with cylindrical symmetry and
spatially uniform boundary conditions.

2. THE GOVERNING EQUATIONS AND NUMERICAL
ALGORITHM
Phase change problems in cylindrical two dimen-
sional regions with radial symmetry may be form-
ulated in terms of enthalpy as follows:

oH 32T 16T
e Vel 1
P K{6r2+r6r} &

where p is the density, K the thermal conductivity and
T the temperature. The enthalpy is related to the
temperature by

Hic H<cTm
T=<Tm ¢cTm< H<cTm+ L 2}
(H - L)/c H<cTm+ L

where ¢ is the specific heat, L is the latent heat of the

phase change and T'mis the phase change temperature.
Using central differences, the explicit form of the

approximation to equation (1} is given by

Hi*' = Hi + P[(1+1/2)) Ti,, — 2T}
=120 T L G=1.on) (3

where P = KAt/p(Ar)?, At is the time step, Ar is the
radial distance step, and T4, H{ are the temperature
and enthalpy, respectively, at the position r = iAr and
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FiG. 1. The movement of a freezing (i.e. phase change) front
through a one-dimensional discretized region.

time t = jAt. At the point r = 0 (i.e. when i = 0) the
above scheme becomes

Hi' = Hy + 4P(T] - T}) @)
since [15]
10T 3T
pmo P Or 0P e

The basis of the one-dimensional linear algorithm
for phase change problems that we have proposed [ 13,
14] is to relate the numerical value of the enthalpy at a
node to the position of the phase change boundary.
For the majority of problems, unless the time step is
large or the size step very small, as the boundary passes
through a node its enthalpy value will remain in the
range [c¢Tm, ¢Tm + L] for a number of time steps. This
time period may be identified as the time taken for the
element of thickness Ax about the nede i to undergo its
phase change [i.e. for the boundary to move from {i —
1/2) Ax to (i + 1/2) Ax, as shown in Fig. 1]. Starting
from this observation, the phase change boundary
may be positioned on the node i whenever the nodal
enthalpy, H; = ¢Tm + L/2. The idea of relating the
phase change boundary position to the above nodal
enthalpy value led to the development of a simple, yet
accurate procedure to trace the boundary through a
one-dimensional region.

A similar procedure may be developed to trace the
radial movement of a phase change front, R(t), of a
circular region with spatially uniform boundary con-
ditions (i.e. radially symmetric). The time that the
moving boundary reaches node i is evaluated as
follows. Suppose (in a freezing problem) the nodal
enthalpy as predicted by the numerical solution of
equations (2)-(4) is such that H{*' < ¢Tm + L/2and
Hi > ¢Tm + L/2. Then the radial position of the phase
change boundary will be R{z;) = iAr where

= (j + x) At (%)
and x, which lies between 0 and 1, is evaluated by a
linear interpolation in time, ie.

(L2 + cTm — H))

HFT - H) ©
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Although this algorithm has been shown to work
well for truly one-dimensional problems it should be
established that it also works for cylindrical problems.
To fulfill this objective a simple test problem is
proposed where at time t = 0O the regtonr > aisin the
liquid phase at its melting temperature Tm > 0. For ¢
> 0 the surface r = a is maintained at zero tempera-
ture so that the position, R(z), of the interface between
the liquid and solid phases satisfies R(t) = a. If the
thermal properties of the solid and liquid phases are
taken as equal and the ratio L/c is large, then an
approximate solution for R(¢) is given by [16]

4K Tmt
L

2Rty In [R(t)/a] — R(t)* + a* = - (D
This solution is illustrated by the continuous line in
Fig. 2 using the following thermal and physical
propertiesa = 0.5m, Tm = 10°C, K = 2W/mK,¢ =
25MIkgK, p = tkg/m®, L = 100MJ/kg The
corresponding numerical solution which was evalu-
ated using At = 1 h and Ar = 0.125m, is shown as
the short dashed line in Fig. 2 and is close to the
approximate analytic solution. The comparison is
further improved for the numerical solution generated
for the case L/c = 100 (i.e. the dot-dash line in Fig. 2).
As such it would appear that the method proposed
above provides accurate solutions to circular cylindnt-
cally shaped regions with spatially uniform boundary
conditions. At this point it should be noted that the
interpolation given by equation (6) is linear, ie. no
radial effects are included. The results of the above test
problem, however, indicate that this assumption does
not greatly affect the accuracy of the proposed method.
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Table 1. Comparison of dimensionless solidification times as predicted by the numerical method and
equation (12)

Dimensionless
solidification time

L* T% Numerical Equation (12) ¢¥ Difference (%)
2 0.2 0.663267 0.660 0.495
2 1 0.731207 0.724 0.995
2 2 0.794881 0.804 -1.134

20 0.2 5.18902 5.1870 0.039

20 1 5.22983 5.215 0.284

20 2 526785 5.25 0.340

50 02 12.7078 12.732 -0.19

50 1 12.7854 12.70 0.672

S0 2 12.8623 12.66 1.598

3. THE PHASE CHANGE TIME OF A
CIRCULAR CYLINDER

For many practical problems involving a change of
phase, the prime interest is to evaluate the solidifi-
cation or melting time of the region. Consider the
following solidification problem, at time ¢ < 0 an
infinitely long cylinder with a circular cross-section is
at a uniform temperature T, > Tm the phase change
temperature of the cylinder. At time ¢t = 0 the surface of
the cylinder is lowered to and fixed at a temperature
Tw < Tm so that solidification begins. This problem
can be described by equations (1) and (2) which can be
written in the following non-dimensional form

oH* o*T* 1 oT
= - O<rt<l
v e < ®)
where
H* H* <0
T* 0 O<H* < L* 9)
H*—L* H* > L*

with the boundary condition

T*(0,t*) = —1 (10a)
and the initial condition
T*(r*, 0) = T}. (10b)
The dimensionless variables are defined by
t* = Kt/R?> pc; r* =r/R
I* — L . Ol — H
o(Tm~Tw)’ ATm—Tw) (11)
T* = (T—Tm)/(Tm—Tw)

T% = (T%—Tm)/(Tm—Tw)

where R is the radius of the circular cross-section.
The numerical scheme outlined and verified above
has been used to solve solidification problems of the
type described by equations (8)—(10). The numerical
results from this scheme indicate that the dimension-
less solidification time t¥ for the circular cylinder may
be approximated by the following expression, viz.

o~

* — (0.14+0.085 T%) + (0.252—0.0025 T3) L*.
(12)

This approximation predicts solidification times
within 1% of the numerical predictions, c.f. Table 1,
when

0<T§<2
and

2<L* <50
Hence for a wide range of cases the solidification (or
melting) time of a cylindrical region with circular
cross-section and spatially uniform boundary con-
ditions may be readily found on use of equations (11)
and (12).

4. APPLICATION TO GENERAL SYMMETRICALLY
SHAPED CYLINDERS

In a case where the cross-section of the cylinder is
non-circular calculation of the solidification/melting
time may be difficult. As a first step prediction,
however, use of equation (12) may provide a reason-
able estimate of this time.

Important factors in deciding the phase change time
of a symmetric cylindrical region are

(a) its cross-sectional area, 4 ;

(b) the ratio of the circumference to the cross-

sectional area C/A4; and

(c) the shape of the cross-section.
When the cylinder’s cross-section is long and thin, e.g.
a long, thin ellipse or rectangle, a very reasonable
estimate for the phase change time can be determined
directly from a one-dimensional solution. As the cross-
sectional shape of the cylinder approaches a circle,
however, this one-dimensional approach will predict a
phase change time which is greater than the true phase
change time. On defining the minor axis, dm, of a cross-
section of a symmetric cylinder to be the shortest
possible straight line which passes through the cross-
section’s center of gravity, a circle with radiusr = dm/2
will be completely contained within the cross section.
The phase change time of a circular cylinder with
cross-sectional radius dm/2 will therefore be shorter
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than the phase change time of the original cylinder. On
the other hand a circular cylinder with the same cross-
sectional area as the original cylinder will take longer
to undergo its phase change. This is because the ratio
of circumference to area is a minimum for a circle. So a
circular cylinder of diameter dm which fits inside the
original cylinder solidifies or melts faster and a circular
cylinder with the same cross-sectional area as the
original cylinder takes longer to solidify or melt.

Consider the following solidification problem. A
long square shaped channel with cross-sectional area
I m?, contains liquid initially at 2°C. The walls of the
channel are held fixed at —10°C for times, t > 0, so
that the liquid in the channel slowly solidifies. The
phase change temperature is 0°C and the thermal
properties of the material in the channel are as in
section 2 above. A lower bound on the solidification
time of the channel can be found on calculating the
solidification time of a circular cylinder of radius 0.5 m,
with the same boundary conditions and thermal
properties as the channel, by equations (11) and (12).
An upper bound on the channel’s solidification time is
found on calculating the solidification time by equa-
tions (11) and (12) of a circular cylinder with cross-
sectional area 1 m?, ie. a radius of 0.5642 m, and
identical conditions to the channel. The upper and
lower bounds on the solidification time of the square
channel by use of the above approach are 128.5 h and
101 h, respectively.

A direct numerical solution for the freezing of the
square channel was generated previously by the au-
thors [13, 14] using a modification to the original
algorithm. This solution predicts a solidification time
of 119.4 h which, as expected, lies between the upper
and lower bounds calculated above.

Although the upper and lower bounds provide an
indication of the solidification time, they are only
accurate to within ~ 15%. A reasonable estimate for
the solidification time may be evaluated by using an
approximating circular cylinder whose radius is given
by r,=(05+0.5642)/2=0.5321m. The predicted
solidification time in this case is 114.3 h, which is
within 5% of the time predicted by the direct solution

Table 2. Comparison of solidification times
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of the two dimensional region. All the above results are
summarized in Table 2.

Use of the above method to calculate the solidifica-
tion/melting time of a general symmetrically shaped
cylinder in a large number of cases may only provide a
first order indication of the phase change time. The
relative accuracy of the upper and lower bounds
depends on the difference in the radii of the approx-
imating cylinders. More precisely the ‘percentage
error spread’, i.e. the sum of the percentage errors in
lower and upper bounds, may be defined as

r2 —rf
E=""""T 100
rﬂ

where r, and r; are the radii of the upper and lower
approximating cylinders and

r, = (r, + r)/2.

The value of E indicates the accuracy of using approx-
imating cylinders for upper and lower bounds on the
phase change time of a cylinder with non-circular
cross-section. For the example of the square channel
outlined above E = 24.1. When the cross-section is a
pentagon with sides of 1 m E = 14.5, which indicates,
in this case, that the method of ‘approximating cylin-
ders’ will be more accurate than for the square.

5. CONCLUSIONS

A modification to the enthalpy method proposed by
the authors elsewhere [13, 14] has been extended to
cope with cylindrical problems containing a circular
cross-section and spatially uniform boundary con-
ditions. After the study of numerically predicted
results a single non-dimensional expression was de-
rived which estimated the numerically predicted phase
change time of a circular cylindrical region to an
accuracy of 19,. This expression was then used to
provide upper and lower bounds for the solidification
times of symmetrically shaped cylinders with spatially
uniform boundary conditions. The procedure was
tested on a cylinder with a square cross-section for
which a direct numerical solution was available. In this

Solidification

Solution
type time (h) direct solution (%,)

Direct numeric solution
of square channel, area =1 m? 119.4 0
Lower bound approximating
circular cylinder, r, = 0.5 101 154
Upper bound approximating
circular cylinder, r,=0.5642 128.5 7.6
Averaged approximating
circular cylinder, r, = (r, + r))/2
=0.5321

1143 4.5
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case, the upper and lower bounds were within 159 of
the solidification time predicted by the direct scheme.
However, a simple refinement produced an estimate of
the solidification which was within 5% of the solidifi-
cation time predicted by the direct numerical scheme.

For the square channel considered in this paper the
procedure to determine upper and lower bounds on
the solidification time proves crude. This is because the
actual solidification time can be estimated with some
confidence. The method outlined in this paper, how-
ever, is not intended to be a rigorous approach to
deriving a phase change time of a symmetric cylinder.
It is intended more to be a quick, pragmatic means of
estimating the phase change time of a cylindrical
region where other methods of analysis cannot be
readily used. For problems where the cross-section of
the cylinder is not a simple shape, then, depending on
the accuracy required, the procedure outlined in this
paper could prove to be a useful tool in estimating the
nature of freezing and melting in symmetrically shaped
cylindrical regions with spatially uniform boundary
conditions.

REFERENCES

1. N. R. Eyres, D. R. Hartree, J. Ingham, R. Jackson, R. J.
Sarjant and J. B. Wagstaff, The calculation of variable
heat flow in solids, Phil. Trans. R. Soc. 240A, 1-57 (1946).

2. P. H. Price and M. R. Slack, The effect of latent heat on
numerical solutions of the heat flow equations, Brit. J.
appl. Phys. 5, 285-287 (1954).

3. E. L. Albasiny, The solution of non-linear heat con-
duction problems on the pilot ace, Proc. I.E.E. 103B,
158-162 (1956).

1461

4. J. Szekely and R. G. Lee, The effect of slag thickness on
heat loss from ladles holding molten steel, Trans. met.
Soc., Trans. AIME 242 961-965 (1968).

5. J. Szekely and N. J. Themelis, Rate Phenomena in Process
Metallurgy. Wiley-Interscience (1971).

6. G. H. Meyer, Multidimensional Stefan problems, SIAM
J. numer. Anal. 10, 522-538 (1973).

7. Atthey, D. R.: A finite difference scheme for melting
problems, J. Inst. Math. Applics. 13, 353-366 (1974).

8. D. R. Atthey, A finite difference scheme for melting
problems based on the method of weak solutions in
Moving Boundary Problems in Heat Flow and Diffusion.
(Edited by J. R. Ockendon and W. R. Hodgkins),
Clarendon Press, Oxford (1973).

9. L. Fox, What are the best numerical methods? in Moving
Boundary Problemsin Heat Flow and Diffusion. (Edited by
J. R. Ockendon and W. R. Hodgkins). Clarendon Press,
Oxford (1973).

10. J. Crank, How to deal with moving boundaries in thermal
problems. Presented at the First International Con-
ference of Numerical Methods in Thermal Problems,
Swansea (1979).

11. C. Bonacina, G. Comini, A. Fasano and M. Primicerio,
Numerical solutions of phase change problems, Int. J.
Heat Mass Transfer 21, 215-219 (1978).

12. V. R. Voller, M. Cross and P. G. Walton, Assessment of
weak solution techniques for solving Stefan problems, in
Numerical Methods in Thermal Problems. (Edited by R.
W. Lewis and K. Morgan). Pineridge Press (1979).

13. V.R. Voller, A mathematical analysis of some aspects of
the coking process, Ph.D. Thesis C.N.A.A., Sunderland
Polytechnic (1980).

14. V. R. Voller and M. Cross, Accurate solutions of moving
boundary problems using the enthalpy method, Int. J.
Heat Mass Transfer 24, 545-556.

15. G. D. Smith, Numerical Solutions of Partial Differential
Equations. Oxford University Press (1965).

16. H.S. Carslaw and J. C. Jaeger, The Conduction of Heat in
Solids. Oxford University Press, 2nd Edn. (1959).

ESTIMATION DES TEMPS DE SOLIDIFICATION ET DE FUSION DE DOMAINES A
SYMETRIE CYLINDRIQUE

Résumé — Un algorithme explicite et simple précédemment développé pour fournir des solutions précises

des problémes de changement de phase dans un espace monodimensionnel est étendu pour couvrir les

domaines circulaires avec des conditions aux limites spatialement uniformes. On obtient une expression

unique adimensionnelle qui fournit P'estimation du temps de solidification ou de fusion d’un cylindre

circulaire. Cette expression est utilisée pour avoir les limites supérieure et inférieure des temps de

solidification/fusion pour des domaines a symétrie cylindrique avec des conditions aux limites spatialement
uniformes.

ABSCHATZUNG DER ERSTARRUNGS- BZW. SCHMELZZEITEN VON
ROTATIONSSYMMETRISCHEN GEBIETEN

Zusammenfassung—FEin vor kurzem entwickelter, expliziter Algorithmus, der genaue Losungen von

eindimensionalen Phaseninderungsproblemen liefert, wurde fiir rotationssymmetrische Gebiete mit raumlich

gleichférmigen Randbedingungen erweitert. Aufgrund einer Analogie numerisch berechneter Werte wurde

ein einfacher dimensionsloser Ausdruck entwickelt, der die Berechnung der Erstarrungs-/Schmelzzeiten

eines Kreiszylinders zuldBt. Dieser Austruck wird spiter dazu benutzt, die Unter- urid Obergrenzen von

Erstarrungs- bzw. Schmelzzeiten fiir allgemeine rotationssymmetrische Gebiete mit rdumlich gleichférmigen
Randbedingungen anzugeben.
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PACYET BPEMEHH 3ATBEPAEBAHHUA WU NMJABJIEHUA UHWJIUHIAPUYECKHUX
CUMMETPUYUHLIX OBJACTENA

AnsoTaums — JIpeioXkeHHBIH paHee NPOCTOR anropuT™M B SBHOH (GOpPMe IS TOYHOIO PEULICHHS
3aga4 ¢ (a3oBbIMH HM3MEHEHHSMH B OIHOM [POCTPAHCTBEHHOM H3MEPEHHMH NPHMEHEH K ClyYako
KPYroBbIX 06JacTedl ¢ NPOCTPAHCTBEHHO OJHOPOAHBIMH TDAHHYHBIMH YCIOBUAMH. B pesynbtate
YHCNEHHOTO HCCIIEOBAHHA BLIBEAEHO Oe3pa3MepHOe BhIPAXEHHE, KOTOpOe NaeT BO3MOXHOCTb pac-
CYMTBIBATL BPEMs 34aTBEPAEBAHHA WIM NIABJICHHSA KPYIJIOrO UMJIMHAPA. 3aTeM C NMOMOILbIO JaHHOIO
BbIDaXEHHUS ONMpeeNeHbl BEPXHAS N HHXKHAA FPAHHLbl BPEMEHH 3aTBEPACBAHHS H IUIABJIEHHS CHMMe-
TPHYHBIX 00J1acTei UWIHHAPHYECKOH KOHMUTYPALMH C YKa3AHHBIMH BbILle TPAHHYHBIMH YCJIOBHAMH.



